
www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

CMSC201
Computer Science I for Majors

Lecture 05 – Algorithmic Thinking

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Last Class We Covered

• Decision structures

• One-way (using if)

• Two-way (using if and else)

• Multi-way (using if, elif, and else)

• Nested decision structures

2

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted3

Any Questions from Last Time?

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Today’s Objectives

• To practice thinking algorithmically

• To understand and be able to implement
proper program development

– To learn more about “bugs”

• To get practice with decision structures

• (Lots of practice)

4

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

What is an Algorithm?

• Steps used to solve a problem

• Problem must be

– Well defined

– Fully understood
by the programmer

5

• Steps must be

– Ordered

– Unambiguous

– Complete

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Algorithmic Thinking

• Algorithms are an ordered set of clear steps
that fully describes a process

• Examples from real life?

– Recipes

– Driving directions

– Instruction manual (IKEA)

• (maybe not so much)

6

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted7

Developing an Algorithm

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Program Development

1. Understand the problem

2. Represent your solution (your algorithm)

– Pseudocode

– Flowchart

3. Implement the algorithm in a program

4. Test and debug your program

8

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Step 1: Understanding the Problem

• Input

– What information or data are you given?

• Process

– What must you do with the information/data?

– This is your algorithm!

• Output

– What are your deliverables?

9

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Step 2: Represent the Algorithm

• Can be done with flowchart or pseudocode

• Flowchart

– Symbols convey different types of actions

• Pseudocode

– A cross between code and plain English

• One may be easier for you – use that one

10

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Steps 3 and 4: Implementation
and Testing/Debugging

• Implementing and testing/debugging your
program are two steps that go hand in hand

• After implementing, you must test it

• After discovering errors, you must find them

– Once found, you must fix them

– Once found and fixed, you must test again

11

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Development Example: Weekly Pay

• Create a program to calculate the
weekly pay of an hourly employee

– What is the input, process, and output?

• Input: pay rate and number of hours

• Process: multiply pay rate by number of hours

• Output: weekly pay

12

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Flowchart Symbols

13

Start

End

Start Symbol

End Symbol

Data Processing Symbol

Input/Output

Decision Symbol

Flow Control Arrows

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Step 2A: Flowchart

14

pay = hours * rate

Start

Display “Number
of hours worked: ”

Get the hours

Display “Amount
paid per hour: ”

Get the rate

Display “The pay
is $” , pay

End

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Step 2B: Pseudocode

• Start with a plain English description, then…

1. Display "Number of hours worked: "

2. Get the hours

3. Display "Amount paid per hour: "

4. Get the rate

5. Compute pay = hours * rate

6. Display "The pay is $" , pay

15

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Algorithms and Language

• Notice that developing the algorithm
didn’t involve any Python at all

– Only pseudocode or a flowchart was needed

– An algorithm can be coded up in any language

• All languages share certain tools that
can be used in your algorithms

– For example, control structures and expressions

16

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Exercise: Are Dogs Good?

• Ask the user if a dog is a good dog

• Print out one
response for “yes”

• Print out a different
response for any
other answer

17

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted18

Debugging

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

A Bit of History on “Bugs”

• US Navy lab (Sep 1947)

• Grace Hopper and her
colleagues were working on
the Harvard Mark II

– Instructions read one at a time
from a tape

• Or trying to… it wasn’t
working right

19

Rear Admiral Grace Hopper

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

A Bit of History on “Bugs”

• Mark II was a LARGE
machine that took up
an entire room

– You could open each
panel and look inside

• They found a moth
inside the machine

– Taped the bug
into their log book

20

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Errors (“Bugs”)

• Two main classifications of errors

• Syntax errors

– Prevent Python from
understanding what to do

• Logical errors

– Cause the program to run
incorrectly, or to
not do what you want

21

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

PB&J Using Exact Instructions

• “You’re not even making any
sense! He’s already ruined it
on purpose, he knows
how to make one.”

• Watch the video here
– (Image from Josh Darnit’s

Exact Instructions Challenge)

22

https://www.youtube.com/watch?v=cDA3_5982h8&feature=youtu.be&t=37s

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Syntax Errors

• “Syntax” is the set of rules followed by a
computer programming language

– Similar to grammar and spelling in English

• Examples of Python’s syntax rules:

– Keywords must be spelled correctly

True and False, not Ture or Flase or Truu

– Quotes and parentheses must be closed in order:

("open and close")

23

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Syntax Error Examples

• Find the syntax errors in each line of code below:

1 prnit("Hello")

2 print("What"s up?")

3 print("Aloha!)

4 print("Good Monring")

24

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Syntax Error Examples

• Find the syntax errors in each line of code below:

1 prnit("Hello")

2 print("What"s up?")

3 print("Aloha!)

4 print("Good Monring")

25

not actually a
syntax error

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Syntax Error Examples

• Find the syntax errors in each line of code below:

1 prnit("Hello")

2 print("What"s up?")

3 print("Aloha!)

4 print("Good Monring")

26

The syntax highlighting in emacs can
often help you see where the errors are

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Logical Errors

• Logical errors don’t bother Python at all…
they only bother you!

• Examples of logical errors:

– Using the wrong value for something

currentYear = 2013

– Doing steps in the wrong order

• “Place pan in the oven. Preheat oven to 350.
Pour batter into pan, spreading evenly.”

27

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Comments in Debugging

• Comments are often used to convey what
your program is doing

– If there is a bug, however, your code may not
actually be accomplishing that task

• Comments are very useful when debugging,
because they separate intent from actuality

– “Is your code working?” and
“Is your code doing what it’s supposed to do?”
are very different questions

28

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted29

Practicing Decision Structures

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Exercise: Nail Polish

• Dr. Gibson has a LOT of nail polish

• Write a game where the user guesses how
many bottles she has, and tell them
whether their guess was high,
low, or correct

• What info do you need?

– (She has 297 bottles)

30

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Exercise: Moving on to CMSC 202

• Ask the user their major and the
grade they earned in CMSC 201

– Print out whether they can move
on to CMSC 202 next semester

• If they’re a CMSC or CMPE major

– They need an A or a B

• Otherwise

– They need an A, B, or a C

31

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

• CTRL+S

– Allows you to search within a file

– (To remember: S stands for “search”)

– Hit CTRL+S, then type in what you want to find

– Hit CTRL+S again to find the next occurrence

– If you reach the end of the file and want to start
back at the beginning, hit CTRL+S again

– Use any movement (arrows, etc.) to exit

32

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Announcements

• HW 1 is out on Blackboard now

– Must complete the Syllabus and Course
Website Quiz to see it

– Due by Friday (February 16th) at 8:59:59 PM

• Pre Lab 4 Quiz will come out Friday @ 10 AM

– Must be completed by 10 AM Monday morning

33

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Image Sources
• IKEA instructions (adapted from):

– https://www.flickr.com/photos/girlinblack/6697086037

• Three dogs:
– https://pixabay.com/p-984015/

• Rear Admiral Grace Hopper:
– https://commons.wikimedia.org/wiki/File:Grace_Hopper.jpg

• Mark II:
– http://amhistory.si.edu/archives/images/d8324-1.jpg

• Notebook bug (adapted from):
– https://commons.wikimedia.org/wiki/File:H96566k.jpg

• Computer bug:
– https://pixabay.com/p-1296767/

• Nail polish (adapted from):
– https://pixabay.com/p-870857/

• Question mark man:
– https://pixabay.com/p-1019993/

34

