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CMSC201
Computer Science I for Majors

Lecture 05 – Algorithmic Thinking
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Last Class We Covered

• Decision structures

• One-way (using if)

• Two-way (using if and else)

• Multi-way (using if, elif, and else)

• Nested decision structures
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Any Questions from Last Time?
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Today’s Objectives

• To practice thinking algorithmically

• To understand and be able to implement 
proper program development

– To learn more about “bugs”

• To get practice with decision structures

• (Lots of practice)

4
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What is an Algorithm?

• Steps used to solve a problem

• Problem must be 

– Well defined

– Fully understood 
by the programmer

5

• Steps must be

– Ordered

– Unambiguous

– Complete
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Algorithmic Thinking

• Algorithms are an ordered set of clear steps 
that fully describes a process

• Examples from real life?

– Recipes

– Driving directions

– Instruction manual (IKEA)

• (maybe not so much)
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Developing an Algorithm



www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Program Development

1. Understand the problem

2. Represent your solution (your algorithm)

– Pseudocode

– Flowchart

3. Implement  the algorithm in a program

4. Test and debug your program

8
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Step 1: Understanding the Problem

• Input

– What information or data are you given?

• Process

– What must you do with the information/data?

– This is your algorithm!

• Output

– What are your deliverables?

9
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Step 2: Represent the Algorithm

• Can be done with flowchart or pseudocode

• Flowchart

– Symbols convey different types of actions

• Pseudocode

– A cross between code and plain English

• One may be easier for you – use that one

10
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Steps 3 and 4: Implementation 
and Testing/Debugging

• Implementing and testing/debugging your 
program are two steps that go hand in hand

• After implementing, you must test it

• After discovering errors, you must find them

– Once found, you must fix them

– Once found and fixed, you must test again

11
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Development Example: Weekly Pay

• Create a program to calculate the 
weekly pay of an hourly employee

– What is the input, process, and output?

• Input: pay rate and number of hours

• Process: multiply pay rate by number of hours

• Output: weekly pay

12
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Flowchart Symbols

13

Start

End

Start Symbol

End Symbol

Data Processing Symbol

Input/Output

Decision Symbol

Flow Control Arrows
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Step 2A: Flowchart

14

pay = hours * rate

Start

Display “Number 
of hours worked: ”

Get the hours

Display “Amount 
paid per hour: ”

Get the rate

Display “The pay 
is $” , pay

End
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Step 2B: Pseudocode

• Start with a plain English description, then…

1. Display "Number of hours worked: "

2. Get the hours

3. Display "Amount paid per hour: "

4. Get the rate

5. Compute pay = hours * rate

6. Display "The pay is $" , pay

15
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Algorithms and Language

• Notice that developing the algorithm 
didn’t involve any Python at all

– Only pseudocode or a flowchart was needed

– An algorithm can be coded up in any language

• All languages share certain tools that 
can be used in your algorithms

– For example, control structures and expressions

16
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Exercise: Are Dogs Good?

• Ask the user if a dog is a good dog

• Print out one 
response for “yes”

• Print out a different 
response for any 
other answer

17
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Debugging
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A Bit of History on “Bugs”

• US Navy lab (Sep 1947)

• Grace Hopper and her 
colleagues were working on 
the Harvard Mark II

– Instructions read one at a time 
from a tape

• Or trying to… it wasn’t 
working right

19

Rear Admiral Grace Hopper
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A Bit of History on “Bugs”

• Mark II was a LARGE 
machine that took up 
an entire room

– You could open each 
panel and look inside

• They found a moth 
inside the machine

– Taped the bug
into their log book

20
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Errors (“Bugs”)

• Two main classifications of errors

• Syntax errors

– Prevent Python from 
understanding what to do

• Logical errors

– Cause the program to run 
incorrectly, or to 
not do what you want

21
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PB&J Using Exact Instructions

• “You’re not even making any 
sense! He’s already ruined it 
on purpose, he knows
how to make one.”

• Watch the video here
– (Image from Josh Darnit’s

Exact Instructions Challenge)
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https://www.youtube.com/watch?v=cDA3_5982h8&feature=youtu.be&t=37s
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Syntax Errors

• “Syntax” is the set of rules followed by a 
computer programming language

– Similar to grammar and spelling in English

• Examples of Python’s syntax rules:

– Keywords must be spelled correctly

True and False, not Ture or Flase or Truu

– Quotes and parentheses must be closed in order: 

("open and close")

23
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Syntax Error Examples

• Find the syntax errors in each line of code below:

1 prnit("Hello")

2 print("What"s up?")

3 print("Aloha!)

4 print("Good Monring")

24
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Syntax Error Examples

• Find the syntax errors in each line of code below:

1 prnit("Hello")

2 print("What"s up?")

3 print("Aloha!)

4 print("Good Monring")

25

not actually a 
syntax error
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Syntax Error Examples

• Find the syntax errors in each line of code below:

1 prnit("Hello")

2 print("What"s up?")

3 print("Aloha!)

4 print("Good Monring")

26

The syntax highlighting in emacs can 
often help you see where the errors are
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Logical Errors

• Logical errors don’t bother Python at all… 
they only bother you!

• Examples of logical errors:

– Using the wrong value for something

currentYear = 2013

– Doing steps in the wrong order

• “Place pan in the oven. Preheat oven to 350.  
Pour batter into pan, spreading evenly.”

27
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Comments in Debugging

• Comments are often used to convey what
your program is doing

– If there is a bug, however, your code may not 
actually be accomplishing that task

• Comments are very useful when debugging, 
because they separate intent from actuality

– “Is your code working?” and 
“Is your code doing what it’s supposed to do?” 
are very different questions

28
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Practicing Decision Structures
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Exercise: Nail Polish

• Dr. Gibson has a LOT of nail polish

• Write a game where the user guesses how 
many bottles she has, and tell them 
whether their guess was high,
low, or correct

• What info do you need?

– (She has 297 bottles)

30
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Exercise: Moving on to CMSC 202

• Ask the user their major and the 
grade they earned in CMSC 201

– Print out whether they can move 
on to CMSC 202 next semester

• If they’re a CMSC or CMPE major

– They need an A or a B

• Otherwise

– They need an A, B, or a C

31
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• CTRL+S

– Allows you to search within a file

– (To remember: S stands for “search”)

– Hit CTRL+S, then type in what you want to find

– Hit CTRL+S again to find the next occurrence

– If you reach the end of the file and want to start 
back at the beginning, hit CTRL+S again

– Use any movement (arrows, etc.) to exit

32
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Announcements

• HW 1 is out on Blackboard now

– Must complete the Syllabus and Course 
Website Quiz to see it

– Due by Friday (February 16th) at 8:59:59 PM

• Pre Lab 4 Quiz will come out Friday @ 10 AM

– Must be completed by 10 AM Monday morning

33
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Image Sources
• IKEA instructions (adapted from):

– https://www.flickr.com/photos/girlinblack/6697086037

• Three dogs:
– https://pixabay.com/p-984015/

• Rear Admiral Grace Hopper:
– https://commons.wikimedia.org/wiki/File:Grace_Hopper.jpg

• Mark II:
– http://amhistory.si.edu/archives/images/d8324-1.jpg

• Notebook bug (adapted from):
– https://commons.wikimedia.org/wiki/File:H96566k.jpg

• Computer bug:
– https://pixabay.com/p-1296767/

• Nail polish (adapted from):
– https://pixabay.com/p-870857/

• Question mark man:
– https://pixabay.com/p-1019993/
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